Simple and multiple P-splines regression with shape constraints.

نویسندگان

  • Kaatje Bollaerts
  • Paul H C Eilers
  • Iven van Mechelen
چکیده

In many research areas, especially within social and behavioural sciences, the relationship between predictor and criterion variables is often assumed to have a particular shape, such as monotone, single-peaked or U-shaped. Such assumptions can be transformed into (local or global) constraints on the sign of the nth-order derivative of the functional form. To check for such assumptions, we present a non-parametric regression method, P-splines regression, with additional asymmetric discrete penalties enforcing the constraints. We show that the corresponding loss function is convex and present a Newton-Raphson algorithm to optimize. Constrained P-splines are illustrated with an application on monotonicity-constrained regression with both one and two predictor variables, using data from research on the cognitive development of children.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparison of Thin Plate and Spherical Splines with Multiple Regression

Thin plate and spherical splines are nonparametric methods suitable for spatial data analysis. Thin plate splines acquire efficient practical and high precision solutions in spatial interpolations. Two components in the model fitting is considered: spatial deviations of data and the model roughness. On the other hand, in parametric regression, the relationship between explanatory and response v...

متن کامل

Shape constrained estimation using nonnegative splines

We consider the problem of nonparametric estimation of unknown smooth functions in the presence of restrictions on the shape of the estimator and on its support, using polynomial splines. We provide a general computational framework that treats these estimation problems in a unified manner, without the limitations of the existing methods. Applications of our approach include computing optimal s...

متن کامل

Inference Using Shape - Restricted Regression Splines

Regression splines are smooth, flexible, and parsimonious nonparametric function estimators. They are known to be sensitive to knot number and placement, but if assumptions such as monotonicity or convexity may be imposed on the regression function, the shaperestricted regression splines are robust to knot choices. Monotone regression splines were introduced by Ramsay [Statist. Sci. 3 (1998) 42...

متن کامل

Constrained Interpolation via Cubic Hermite Splines

Introduction In industrial designing and manufacturing, it is often required to generate a smooth function approximating a given set of data which preserves certain shape properties of the data such as positivity, monotonicity, or convexity, that is, a smooth shape preserving approximation.  It is assumed here that the data is sufficiently accurate to warrant interpolation, rather than least ...

متن کامل

Predictive factors of glycosylated hemoglobin using additive regression model

Introduction: Diabetes is a chronic disease, non-epidemic disease that costs a lot of money in each year. One of the diagnostic criteria for diabetes is Glycosylated Hemoglobin (HBA1C), which in this study the effective factors on it examined by additive regression model. Materials and Methods: In this cross-sectional study, 130 patients with diabetes type-2 were selected based on simple random...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The British journal of mathematical and statistical psychology

دوره 59 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2006